График. Онлайн-консультации. Оплата анализов онлайн. Анализы в другом городе.

Меню
Меню

Биохимия фосфолипидов

Е.Л.Насонов, проф., директор НИИ Ревматологии РАМН г. Москва

Фосфолипиды представляют собой сходные по структуре молекулы, состоящие из глицеринового скелета с фосфодиэфирными группами в положении С3, соединенные со спиртовыми полярными группами и двумя эстерифицированными глицерином жирными кислотами в положении С1’ и C2’. Природные фосфолипиды в положении C1’ содержат насыщенную жирную кислоту, а в положении C2’ — ненасыщенную жирную кислоту. С химической точки зрения самой простой формой фосфолипидов является фосфатидиловая кислота (ФК), в которой молекула спирта отсутствует. Эта молекула рассматривается как «фосфатидиловый» компонент более сложных фосфолипидов, название которых зависит от типа спиртовой группы. В клетках человека спиртовые группы состоят из азотистых оснований (холин, этаноламин, серин), глицерина или инозитола. В соответствии с этим фосфолипиды имеют названия: фосфатидилхолин (ФХ), фосфатидилэтаноламин (ФЭ), фосфатидилглицерин (ФГ), фосфатидилинозитол (ФИ) и фосфатидилглицерин (кардиолипин). Кардиолипин (КЛ) является уникальным фосфолипидом, состоящим из двух диэфирных фосфатных групп, соединенных молекулой глицерина. Химическая структура полярной «головы» определяет суммарный электрический заряд и ионное состояние фосфолипида. ФХ и ФЭ, имея отрицательно заряженную фосфатную группу и положительно заряженную аминогруппу, электрически нейтральны и называются нейтральными фосфолипидами, ФС, ФГ, ФК, ФИ и КЛ являются отрицательно заряженными или анионными фосфолипидами [McNeil H. P. и соавт., 1991].

Физические свойства фосфолипидов исследованы на модели мембранных систем, наиболее простой из которых является диспергирование липидов в жидкости. В этой ситуации фосфолипиды принимают одну из трех возможных конфигураций: мицеллярную, двухслойную или ламелларную (типичное состояние фосфолипидов биомембран) и гексагональную фазу. Способность фосфолипидов находиться в той или иной фазе зависит как от внутренних свойств молекул (природа «головной» группы, длина и степень насыщения жирной кислоты), так и внешних факторов (гидратация, температура, pH и ионная сила раствора). Присутствие дивалентных катионов, других липидов и белков также влияет на поведение фосфолипидов в системе за счет изменения формы их молекулы, которая в наиболее простых случаях зависит от соотношения площадей, занимаемых гидрофобными жирными кислотами и гидрофильными полярными «головными» группами.

Например, поскольку ФЭ имеет меньшую, чем ФХ «головную» группу и водородный мостик между фосфатной и аминогруппой, постольку уменьшается площадь молекулы в «головной» группе, и он спонтанно занимает гексагональную фазу. Другие фосфолипиды обычно занимают ламелларную фазу, но при изменении липидного микроокружения могут переходить в гексагональную. Ионы кальция индуцируют эту конфигурацию у КЛ за счет связывания с анионной группой, что уменьшает электростатическое отталкивание и площадь «головной» группы.

В клеточной мембране фосфолипиды образуют двойной слой, в котором гидрофобные цепи жирных кислот направлены внутрь мембраны, а гидрофильные полярные группы кнаружи. Мембранные белки прикрепляются периферически за счет полярных или ионных взаимодействий, или включаются в состав липидного слоя. Биологические мембраны обладают «жидкостными» свойствами, так как в пределах одного слоя отдельные липидные молекулы способны меняться местами с соседними со скоростью более миллиона раз в секунду. Обмен липидных молекул между слоями (flip-flop) является значительно более редким событием. Клеточная мембрана обладает выраженной асимметрией в плане распределения различных классов фосфолипидов во внешнем и внутреннем слоях. Холин-содержащие нейтральные фосфолипиды, такие как сфингомиелин и ФХ локализуются на внешней стороне мембраны в сочетании с небольшим количеством ФЭ. Внутренняя (цитозольная) часть ее состоит из небольшого количества ФХ и сфингомиелина, большого количества ФЭ, а также ФС и ФИ. Таким образом, в норме анионные фосфолипиды не присутствуют на внешней поверхности биомембран.

У млекопитающих КЛ локализуется главным образом в сердечной ткани на внутренней мембране митохондрий, где он составляет не менее 20% от всех фосфолипидов. КЛ не выявляется на плазменных мембранах, на которых около 50—60% от общего пула фосфолипидов составляют сфингомиелин и ФХ, 20—30% — ФЭ, 10—15% ФС и менее 5% — ФИ. Сфингомиелин и ФХ адаптируют преимущественно ламелларную конфигурацию и, следовательно, вносят основной вклад в стабильность клеточной мембраны. Хотя ФЭ принимает преимущественно гексагональную фазу, он стабилизируется в клеточной мембране в присутствии других липидов. Однако некоторые специализированные функции клеточных мембран, например, экзоцитоз, требуют транзиторного перехода в другую, гексагональную фазу, и в этом процессе ФЭ, вероятно, играет важную роль.

Мембранная асимметрия фосфолипидов — универсальный феномен, характерный практически для всех клеток [Schroit A. J. и Zwaal R. F. A., 1991]. В настоящее время установлено, что поддержание асимметрии является активным процессом, реализующимся за счет активности АТФ и сульфгидрил-зависимого липидного насоса (аминофосфолипидтранслоказы), который перемещает аминофосфолипиды по направлению к внутренней мембране [Schroit A. J. и Zwaal R. F. A., 1991; Devaux P. F., 1992]. Активация приводит к увеличению движения фосфолипидов между слоями, что сопровождается потерей асимметрии. В частности, тромбоциты при стимуляции утрачивают нормальную асимметрию мембраны, что приводит к увеличению экспансирования анионного ФС. Этот процесс играет важную физиологическую роль в развитии локальной реакции свертывания крови. Кроме того, поверхностная экспозиция ФС (по крайней мере, на эритроцитах) является сигналом для быстрого выведения этих клеток из кровяного русла.

Отрицательно заряженные фосфолипиды создают поверхность, на которой происходит сборка ферментных комплексов двух основных реакций коагуляционного каскада. В одном из них (теназный комплекс) фактор X активируется комплексом фактора IXa и VIIIa, а в другом — протромбиназная реакция, происходит конверсия протромбина в тромбин ферментным комплексом, состоящим из фактора Xa и Va (протромбиназный комплекс). Взаимодействие факторов IXa, Xa и протромбина с липидной поверхностью происходит посредством образования кальций-зависимого мостика между остатками гамма-карбоксиглютаминовой кислоты этих белков и отрицательно заряженными полярными группами фосфолипидов. Связывание с липидной поверхностью приводит к увеличению локальной концентрации и эффективного расположения коагуляционных факторов, что способствует максимальной скорости протекания реакции. Любые вещества, мешающие сборке этих комплексов на фосфолипидной поверхности, в том числе антитела к фосфолипидам потенциально способны повышать уровень образования тромбина и нарушать свертывание крови.

Литература

  • Devaux P. F. Protein involvement in transmembrane lipid asymmetry // Ann. Rev. Biophys. Biomol. Struct. — 1992. — Vol. 21. — p. 417 — 439.
  • McNeil H. P., Chesterman C. N., Krilis S. A. Immunology and clinical importance of antiphospholipid antibodies // Adv. Immunol. — 1991. — Vol. 49. — p. 193—280.
  • Schroit A. J., Zwaal R. F. A. Transbilayer movement of phospholipids in red cell and platelet membrane // Biochem. Biophys. Acta. — 1991. — Vol. 1071. — p. 313—329.
Теги: иммунология репродукции

Возврат к списку